101 to 150 of 62,910 Results
Jul 9, 2025 -
National Travel Survey, 2023
Unknown - 198.4 MB -
MD5: b3ebba25bf7c4cf4548be01675c1fd66
Bootstrap weights in Stata .dta format for Trip file |
Jul 9, 2025 -
National Travel Survey, 2023
Unknown - 2.7 MB -
MD5: 13032c3e1c7f1292d95fa3fed38612af
Trip file in ASCII plain text format |
Jul 9, 2025 -
National Travel Survey, 2023
Unknown - 3.2 MB -
MD5: 5c51ff8df555c5e784284ab32a5df1df
Trip file in SAS .sas7bdat format |
Jul 9, 2025 -
National Travel Survey, 2023
Unknown - 21.2 KB -
MD5: e17fa259b5081d8d2f1b6d9a17ab9f49
SAS program for Trip file |
Jul 9, 2025 -
National Travel Survey, 2023
Unknown - 3.8 MB -
MD5: 4cc1d8e161c80305eb4fd628ec6bb69d
Trip file in SPSS .sav format |
Jul 9, 2025 -
National Travel Survey, 2023
Unknown - 18.2 KB -
MD5: ed6ae2ebd9d254958fde9307c58f1ab3
SPSS syntax for Trip file |
Jul 9, 2025 -
National Travel Survey, 2023
Tabular Data - 30.8 MB - 142 Variables, 67556 Observations - UNF:6:9f13KXMv5WYqTrlgXsFGMg==
Trip file data (subsettable) (original SPSS .sav) |
Jul 9, 2025 -
National Travel Survey, 2023
Unknown - 13.8 KB -
MD5: 8f8e7cf46213ea3a34a958344ffdae79
Stata commands for Trip file |
Jul 9, 2025 -
National Travel Survey, 2023
Unknown - 2.6 MB -
MD5: 634900ea57d44df902f405b6c6448894
Trip file in Stata .dta format |
Jul 9, 2025 -
National Travel Survey, 2023
Unknown - 1.7 MB -
MD5: 7ef7b844ca8fdf17fb72269accc2ab66
Visit file in ASCII plain text format |
Jul 9, 2025 -
National Travel Survey, 2023
Tabular Data - 13.1 MB - 33 Variables, 149320 Observations - UNF:6:IqflXTkMncamaKixbUs99Q==
Visit file data (subsettable) (original SPSS .sav) |
Jul 9, 2025 -
National Travel Survey, 2023
Unknown - 2.0 MB -
MD5: bb1c066a98aef3dc66ff6707f3403c0b
Visit file in SAS .sas7bdat format |
Jul 9, 2025 -
National Travel Survey, 2023
Unknown - 8.9 KB -
MD5: e14f153408927aa9a47e98ba8e97f29d
SAS program for Visit file |
Jul 9, 2025 -
National Travel Survey, 2023
Unknown - 2.4 MB -
MD5: 0356073dff600da12aaa68b2dcfeec53
Visit file in SPSS .sav format |
Jul 9, 2025 -
National Travel Survey, 2023
Unknown - 7.6 KB -
MD5: d7d7d9c923ecd9c8a091601d9802c72f
SPSS syntax for Visit file |
Jul 9, 2025 -
National Travel Survey, 2023
Unknown - 6.7 KB -
MD5: 5b58de835903ca60c0c4f9806cc1f253
Stata commands for Visit file |
Jul 9, 2025 -
National Travel Survey, 2023
Unknown - 1.6 MB -
MD5: cf6eb41d04ea94af186b8df07bbe9123
Visit file in Stata .dta format |
Jul 9, 2025 -
National Travel Survey, 2023
Adobe PDF - 5.0 MB -
MD5: 1a8aa7ea54a9dd98d734efee659ecd62
Questionnaire |
Jul 9, 2025 -
National Travel Survey, 2023
Adobe PDF - 1.2 MB -
MD5: eb27dc82e06a17677d90ed1c5dc88037
Codebook for Person bootstrap weights file |
Jul 9, 2025 -
National Travel Survey, 2023
Adobe PDF - 1.2 MB -
MD5: 409ae4e17d5d543d084fe00066374280
Codebook for Trip bootstrap weights file |
Jul 9, 2025 -
National Travel Survey, 2023
Adobe PDF - 1.3 MB -
MD5: b669effd418e52780a8fd375aef18dda
Codebook for Person file |
Jul 9, 2025 -
National Travel Survey, 2023
Adobe PDF - 1.5 MB -
MD5: 496bfa09c82d76e7a72305d41269e5cd
Codebook for Trip file |
Jul 9, 2025 -
National Travel Survey, 2023
Adobe PDF - 1.3 MB -
MD5: 9d29f382a8cff35d047a9ee101fb77b6
Codebook for Visit file |
Jul 9, 2025 -
National Travel Survey, 2023
Adobe PDF - 606.2 KB -
MD5: 3f2e1ef1fa9690de1690675fabd7e04f
User guide |
Jul 4, 2025 - Statistics Canada - DLI
Statistics Canada, 2025, "Postal Codes by Federal Ridings File (PCFRF) 2023 Representation Order, June 2025 Postal Codes, 2025", https://hdl.handle.net/11272.1/AB2/KJHFWJ, Abacus Data Network, V1
The Postal Code Project is responsible for linking the approximately 900,000 single postal codes in Canada to Statistics Canada’s Census dissemination geography, (presently 2021 Census geography). This process is performed by using data provided by Canada Post Corporation and lin... |
Jul 4, 2025 -
Postal Codes by Federal Ridings File (PCFRF) 2023 Representation Order, June 2025 Postal Codes, 2025
Adobe PDF - 373.6 KB -
MD5: beb35a74f62e07ca5227e4a29b3192fe
Reference guide |
Jul 4, 2025 -
Postal Codes by Federal Ridings File (PCFRF) 2023 Representation Order, June 2025 Postal Codes, 2025
Plain Text - 110.5 MB -
MD5: 276d74ba62f8c341c4763e59d6c80fba
Postal codes by federal ridings file, June 2025 postal codes |
Jul 4, 2025 -
Postal Codes by Federal Ridings File (PCFRF) 2023 Representation Order, June 2025 Postal Codes, 2025
Plain Text - 396 B -
MD5: 62772aee10a478e9cf5e3e2d84be0713
File manifest |
Jul 4, 2025 - Statistics Canada - DLI
Statistics Canada, 2025, "Postal Code Conversion File, June 2025 Postal Codes, 2025", https://hdl.handle.net/11272.1/AB2/2OJO0T, Abacus Data Network, V1
The Postal Code Project is responsible for linking the approximately 900,000 single postal codes in Canada to Statistics Canada’s Census dissemination geography, (presently 2021 Census geography). This process is performed by using data provided by Canada Post Corporation and lin... |
Plain Text - 60.3 KB -
MD5: 4be5ddd67ea7010697758cb28bc94627
SPSS syntax for PCCF. Non-Statistics Canada product from <odesi> (Ontario Data Documentation, Extraction Service and Infrastructure) |
Adobe PDF - 567.4 KB -
MD5: 7ef70dcbd32d2586e62f2083ea423d7a
Reference guide |
Plain Text - 286.9 MB -
MD5: 831e86264932214a787a58bf200378db
National data: June 2025 postal codes |
Plain Text - 712.1 KB -
MD5: fe54ca7c3d616744ef723c69c15b0cbd
File manifest |
Plain Text - 15.0 MB -
MD5: 030994c4f2562c4d375f02a468df0d14
Retired postal codes: June 2025 |
Jun 9, 2025 - Linguistic Data Consortium
Bekkozhanova, Gulnar; Bills, Aric; Chouder, Sarra; Jaralve, Vanessa; Corey, Cassian; Dubinski, Eyal; Ellis, Corinna; Gibby, Paul; Kazi, Michael; Lam, Julie; Le, Hanh; Malyska, Nicolas; Marcucci, Giorgia; Marvi, Sarah; McConnell, Sara; Melot, Jennifer; Mensch, Alyssa; Morrison, Michelle; Paget, Shelley; Ramizo, Katerina; Richardson, Frederick; Roberts, Annette; Rubino, Carl; Sarseke, Gulnar; Taubayev, Zharas, 2025, "MATERIAL Kazakh-English Language Pack", https://hdl.handle.net/11272.1/AB2/5G61UB, Abacus Data Network, V1
Abstract Introduction MATERIAL Kazakh-English Language Pack was developed by Appen for the IARPA (Intelligence Advanced Research Projects Activity) MATERIAL (Machine Translation for English Retrieval of Information in Any Language) program. It contains approximately 57 hours of K... |
Jun 9, 2025 -
MATERIAL Kazakh-English Language Pack
Plain Text - 1.3 KB -
MD5: 4d4231d07ac669e105f71e602457efea
Working with ISO disc images |
Jun 9, 2025 -
MATERIAL Kazakh-English Language Pack
Optical Disc Image - 9.0 GB -
MD5: 368db6e6280771ca15d57d25f32b7c35
ISO disc image containing all documentation and data |
Jun 9, 2025 -
MATERIAL Kazakh-English Language Pack
Plain Text - 225.1 KB -
MD5: 3b3588fc37a241f870756de3dcc14bcc
File manifest |
Jun 6, 2025 - Statistics Canada - DLI
Statistics Canada, 2025, "Social Policy Simulation Database and Model (SPSD/M), Version 30.3, database year 2018", https://hdl.handle.net/11272.1/AB2/VBIP9B, Abacus Data Network, V2
The SPSD/M is a static microsimulation model designed to analyse financial interactions between governments and individuals in Canada. It can compute taxes paid to and cash transfers received from government. It is comprised of a database, a series of tax/transfer algorithms and... |
Jun 6, 2025 -
Social Policy Simulation Database and Model (SPSD/M), Version 30.3, database year 2018
Markdown Text - 4.2 KB -
MD5: 1efc692ac016aae35b02032ef8cb4936
SPSDM errata 2025-06 |
Jun 6, 2025 -
Social Policy Simulation Database and Model (SPSD/M), Version 30.3, database year 2018
Adobe PDF - 17.2 KB -
MD5: 049b72a1ea7efbcf5de57ca803ace370
SPSDM errata 2025-06 |
Jun 6, 2025 - Statistics Canada - DLI
Statistics Canada, 2024, "Social Policy Simulation Database and Model (SPSD/M), Version 30.2, database year 2018", https://hdl.handle.net/11272.1/AB2/W8OJLS, Abacus Data Network, V2
The SPSD/M is a static microsimulation model designed to analyse financial interactions between governments and individuals in Canada. It can compute taxes paid to and cash transfers received from government. It is comprised of a database, a series of tax/transfer algorithms and... |
Jun 6, 2025 -
Social Policy Simulation Database and Model (SPSD/M), Version 30.2, database year 2018
Markdown Text - 4.2 KB -
MD5: 1efc692ac016aae35b02032ef8cb4936
SPSDM errata 2025-06 |
Jun 6, 2025 -
Social Policy Simulation Database and Model (SPSD/M), Version 30.2, database year 2018
Adobe PDF - 17.2 KB -
MD5: 049b72a1ea7efbcf5de57ca803ace370
SPSDM errata 2025-06 |
Jun 6, 2025 -
Labour Force Survey, 2025
Tabular Data - 11.5 MB - 60 Variables, 116042 Observations - UNF:6:eMP+Y/0JB15z2AbkltqOlw==
May 2025 data (subsettable) (original SPSS.sav) |
Jun 6, 2025 -
Labour Force Survey, 2025
Plain Text - 15.5 MB -
MD5: 7c94365ae942ceb89cc0b179e9504a89
May 2025 data, flat ASCII format |
May 30, 2025 - Statistics Canada Open License
Statistics Canada, 2025, "Indigenous Peoples Survey, 2022", https://hdl.handle.net/11272.1/AB2/8OCAVX, Abacus Data Network, V1, UNF:6:rz0eCG9i+giz2D43bLwnLg== [fileUNF]
The 2022 Indigenous Peoples Survey (IPS) is a national survey on the social and economic conditions of First Nations people living off-reserve, Métis and Inuit, aged one year and older. The 2022 IPS represents the sixth cycle of the survey and focuses on families and children. Th... |
May 30, 2025 -
Indigenous Peoples Survey, 2022
Adobe PDF - 1.0 MB -
MD5: 5d23b7fe92e71699bd5ef391d2a9278b
User guide |
May 30, 2025 -
Indigenous Peoples Survey, 2022
Unknown - 1.6 MB -
MD5: 37b6f7d8a67b9170399f1a69df649156
Microdata in plain text flat ASCII format |
May 30, 2025 -
Indigenous Peoples Survey, 2022
Unknown - 129.5 MB -
MD5: 79e069c10a110d18454615de7872a3c7
Bootstrap weights file in plain text flat ASCII format |